
surfaxe
Release v0.1

Katarina Brlec, Daniel Davies

Oct 01, 2021

CONTENTS

1 Getting started 3
1.1 Introduction . 3
1.2 Installation . 3
1.3 Usage . 3

2 Command Line Interface (CLI) 5
2.1 Pre-processing commands . 6
2.2 Post-processing commands . 7
2.3 Analysis commands . 7
2.4 Data commands . 7
2.5 YAML input files . 8

3 surfaxe Python package 9
3.1 Submodules . 9

3.1.1 surfaxe.generation module . 9
3.1.2 surfaxe.convergence module . 11
3.1.3 surfaxe.analysis module . 11
3.1.4 surfaxe.io module . 14
3.1.5 surfaxe.vasp_data module . 17

4 Tutorials 19
4.1 Using configuration dictionaries . 19

5 Indices and tables 21

Python Module Index 23

Index 25

i

ii

surfaxe, Release v0.1

View the code on Github here.

Contents:

CONTENTS 1

http://github.com/SMTG-UCL/surfaxe

surfaxe, Release v0.1

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

1.1 Introduction

The purpose of surfaxe is to simplify the calculation of surface properties of inorganic compounds using first-
principles codes. The package includes pre-processing tools to cleave surfaces from the bulk, automatically set up
calculation directories and facilitate convergence testing, as well as post-processing tools to calcualte surface energies,
electrostatic potentials, and produce publication-qaulity plots.

1.2 Installation

Installation will be via pip in the near future. For now, please clone the repository and install the latest stable version:

git clone https://github.com/SMTG-UCL/surfaxe.git
cd surfaxe
pip install -e .

The -e is optional and will install the project in developer (editable) mode.

For the code to generate VASP input files along with the surface slabs, pymatgen POTCAR environment must be set
up correctly.

1.3 Usage

In general, there are two ways to use surfaxe: (i) at the command line or (ii) using python in scripts or notebooks.

Take a look at our command line interface (CLI) examples for an overview of the CLI tools available.

There is full documentation for all modules (have a browse of the side bar on the left) if you would rather use the python
API directly.

3

https://pymatgen.org/installation.html#potcar-setup
command_line_examples.html

surfaxe, Release v0.1

4 Chapter 1. Getting started

CHAPTER

TWO

COMMAND LINE INTERFACE (CLI)

While surfaxe has a full python API (see our tutorials page for example usage) it also has an intuitive command line
interface (CLI). Below are some simple examples of what you can do with surfaxe at the command line.

You can get a full list of accepted flags and what they do for each command using the --help or -h flag, e.g.:

$ surfaxe-bonds -h

> usage: surfaxe-bonds [-h] [-s STRUCTURE] [-b BOND [BOND ...]]
[--oxi-list OX_STATES_LIST [OX_STATES_LIST ...]]
[--oxi-dict OX_STATES_DICT] [--no-csv]
[--csv-fname CSV_FNAME] [--no-plot]
[--plt-fname PLT_FNAME] [-c COLOR] [--width WIDTH]
[--height HEIGHT] [--dpi DPI] [--yaml]

Parses the structure looking for bonds between atoms. Check the validity of
the nearest neighbour method on the bulk structure before using it on slabs.

optional arguments:
-h, --help show this help message and exit
-s STRUCTURE, --structure STRUCTURE

Filename of structure file in any format supported by
pymatgen (default: POSCAR

-b BOND [BOND ...], --bond BOND [BOND ...]
List of elements e.g. Ti O for a Ti-O bond

--oxi-list OX_STATES_LIST [OX_STATES_LIST ...]
Add oxidation states to the structure as a list
e.g. 3 3 -2 -2 -2

--oxi-dict OX_STATES_DICT
Add oxidation states to the structure as a dictionary
e.g. Fe:3,O:-2

--no-csv Prints data to terminal
--csv-fname CSV_FNAME

Filename of the csv file (default: bond_analysis.csv)
--no-plot Turns off plotting
--plt-fname PLT_FNAME

Filename of the plot (default: bond_analysis.png)
-c COLOR, --color COLOR

Color of the marker in any format supported by mpl
e.g. "#eeefff" hex colours starting with # need to be
surrounded with quotation marks

--width WIDTH Width of the figure in inches (default: 6)
(continues on next page)

5

surfaxe, Release v0.1

(continued from previous page)

--height HEIGHT Height of the figure in inches (default: 5)
--dpi DPI Dots per inch (default: 300)
--yaml YAML Read all args from a yaml config file. Completely

overrides any other flags set

The behaviour of default parameters of the functions is extensively documented in the surfaxe python package section
of the docs.

2.1 Pre-processing commands

surfaxe-generate-slabs: Generates all unique slabs with specific Miller indices or up to a maximum Miller index for
a set of slab and vacuum thicknesses.

Example: surfaxe-generate -s bulk_structure.cif --hkl 1,1,0 -t 20 40 -v 20 40 -f generates all
slabs for the (1,1,0) direction for minimum slab and vacuum thicknesses of 20 Å and 40 Å. The -f option organises
these into subdirectories with all required VASP input files required to run singleshot calculations uisng default settings.
It includes all combinations for zero-dipole terminations with inversion symmetry. The directory structure produced
is:

100/ <-- Miller index
20_20_0/ <-- slab-thickness_vacuum-thickness_termination-number
20_40_0/
40_20_0/
40_40_0/
POSCAR <-- VASP files
INCAR
POTCAR
KPOINTS

Note: The hkl flag must be comma-separated with no spaces and the list of thicknesses and vacuums must be space-
separated.

Note: To use the :mod:`-f` option you must first set up the `pymatgen POTCAR environment
<https://pymatgen.org/installation.html#potcar-setup>`_.

Similarly, to above the script can be modified to consider multiple Miller indices.

Example: surfaxe-generate -s bulk_structure.cif --hkl 1,1,0 1,1,1 -t 20 40 -v 20 40 -f gen-
erates all (1,1,0) and (1,1,1) slabs with minimum slab and vacuum thicknesses of 20 Å and 40 Å.

Note: h,k,l are comma-separated with no spaces, while the two (or more) Miller indices are space-separated.

Lastly, a maximum hkl value can be supplied as an integer so that the script finds all zero-dipole slabs up to that
maximum Miller index.

Example: surfaxe-generate -s SnO2.cif --hkl 2 -t 20 40 -v 30 generates all slabs with Miller indices
up to a maximum value of 2, with minimum slab thicknesses of 20 Å and of 40 Å, and minimum vacuum thickness of
30 Å.

6 Chapter 2. Command Line Interface (CLI)

surfaxe, Release v0.1

2.2 Post-processing commands

surfaxe-parse-energies: Parses data produced by electronic structure codes once calculations have been run in then
directory structures produced by the pre-processing commands. Can optionally collect vacuum and core energies.

Example: surfaxe-parse-energies --hkl 0,0,1 -b 8.83099 saves a csv file of surface energies and energies
per atom for each slab-vacuum combination. See the Tutorials directory for examples.

surfaxe-plot-surfen and surfaxe-plot-enatom can be used to customise the surface energy and energy per atom plots
independetnly based on the data already collated with surfaxe-parse-energies.

surfaxe-parse-structures: Parses the (relaxed) structures from convergence calculations and collates them into the
same json format as is created when surface slabs are generated. Can optionally perform bond analysis for multiple
specified bonds. Useful for comparison of relaxed and unrelaxed surfaces slabs and determination of convergence.

2.3 Analysis commands

surfaxe-potential: Reads the local electrostatic potential file and plots the planar and macroscopic averages normal to
the surface. Currently only the VASP LOCPOT file is supported as input.

Example: surfaxe-potential -l LOCPOT -v 11.5 produces a plot assuming a lattice vector of 11.5 Angstroms
and saves the plot data to a csv file.

surfaxe-bonds: Analyse bonding in the structure using Pymatgen’s local_env module. Average bond lengths for each
pair of species of interest can be plotted as a function of c lattice vector (normal to the slab surface). This can be useful
for checking whether the center of the slab has converged, where bond distances should be bulk-like.

Example: surfaxe-bonds -s CONTCAR -b Sn O plots the average Sn-O bond length from the VASP output struc-
ture file. A csv file of the data plotted is also produced.

surfaxe-plot-potential and surfaxe-plot-bonds can be used to generate the plots based on the data collated with
surfaxe-potential and surfaxe-bonds, allowing customisation of plots without having to re-analyse the data. All
plotting functionality is accessible through the main functions as well.

surfaxe-simplenn and surfaxe-complexnn: Analyse the bonding in the slab, again using Pymatgen functions. sim-
plenn is faster, but less reliable for systems with more complex bonding. complexnn is more robust but requires a
dictionary of cutoff bond lengths to be supplied for each pair of species. See the analysis tutorial for further explana-
tion.

Example: surfaxe-complexnn -s CONTCAR_bivo4 -b Bi3+ O2- 2.46 V5+ O2- 1.73 will analyse the coor-
dination of atoms in this BiVO4 slab and save them to a csv file.

2.4 Data commands

There are some simple convenience commands that can also be used to extract key values from raw data files produced
by solid state codes. Currently only commands relating to VASP output files are included, which rely on the surfaxe
vasp_data module. We hope to expand this in the future.

surfaxe-vacuum and surfaxe-core can be used to extract vacuum and core energies, respectively, that are needed to
calculate absolute electron energies (ionisation potential and electron affinity). See the Macrodensity tutorials for more
information on the steps needed to do this.

2.2. Post-processing commands 7

https://www.github.com/WMD-group/macrodensity

surfaxe, Release v0.1

2.5 YAML input files

Most CLI commands allow use of YAML input files containing all the arguments which cannot be used in conjunction
with other command line argument flags. This is done by specifying the --yaml flag which overrides any other flags
set in command line by loading the surfaxe_config.yaml file.

Sample YAML input files for each of the functions, with defaults and comments are in the surfaxe/cli/templates
folder. All **kwargs of the main function can be passed in the YAML file.

Example: Generation of (1,0,1) CdTe slabs could easily customised so that all VASP input files are created with specific
INCAR tags using the following config.yaml file:

structure: CdTe.cif
hkl: (1,0,1)
thicknesses: [20, 40]
vacuums: [20, 40]
make_fols: True
make_files: True
max_size: 500
center_slab: True
ox_states:
Cd: 2
Te: -2

fmt: poscar
name: POSCAR
config_dict: PBE_config.json
user_incar_settings:
ENCUT: 460
KPAR: 3

user_kpoints_settings:
reciprocal_density: 35

The slabs would then be generated using surfaxe-gethkl --yaml config.yaml

8 Chapter 2. Command Line Interface (CLI)

CHAPTER

THREE

SURFAXE PYTHON PACKAGE

Please peruse the submodules at your leisure

3.1 Submodules

3.1.1 surfaxe.generation module

surfaxe.generation.generate_slabs(structure, hkl, thicknesses, vacuums, save_slabs=True,
save_metadata=True, json_fname=None, make_fols=False,
make_input_files=False, max_size=500, center_slab=True,
ox_states=None, is_symmetric=True, layers_to_relax=None,
fmt='poscar', name='POSCAR', config_dict=None,
user_incar_settings=None, user_kpoints_settings=None,
user_potcar_settings=None, parallelise=True, **kwargs)

Generates all unique slabs for a specified Miller indices or up to a maximum Miller index with minimum slab
and vacuum thicknesses. It includes all combinations for multiple zero dipole symmetric terminations for the
same Miller index.

The function returns None by default and generates either:

(i) POSCAR_hkl_slab_vac_index.vasp (default)

(ii) hkl/slab_vac_index folders with structure files

(iii) hkl/slab_vac_index with all VASP input files

Or if save_slabs=False a list of dicts of all unique slabs is returned.

Parameters

• structure (str or pmg Structure obj) – Filename of structure file in any format supported
by pymatgen or pymatgen structure object.

• hkl (tuple, list or int) – Miller index as tuple, a list of Miller indices or a maximum index
up to which the search should be performed. E.g. if searching for slabs up to (2,2,2) hkl=2

• thicknesses (list) – The minimum size of the slab in Angstroms.

• vacuums (list) – The minimum size of the vacuum in Angstroms.

• save_slabs (bool, optional) – Whether to save the slabs to file. Defaults to True.

• save_metadata (bool, optional) – Whether to save the slabs’ metadata to file. Saves the
entire slab object to a json file Defaults to True.

9

surfaxe, Release v0.1

• json_fname (str, optional) – Filename of json metadata file. Defaults to
bulk_formula_metadata.json

• make_fols (bool, optional) – Makes folders for each termination and slab/vacuum thickness
combinations containing structure files.

– True: A Miller index folder is created, in which folders named slab_vac_index are created
to which the relevant structure files are saved.

E.g. for a (0,0,1) slab of index 1 with a slab thickness of 20 Å and vacuum thickness
of 30 Å the folder structure would be: 001/20_30_1/POSCAR

– False: The indexed structure files are put in a folder named after the bulk formula.

E.g. for a (0,0,1) MgO slab of index 1 with a slab thickness of 20 Å and vacuum
thickness of 30 Å the folder structure would be: MgO/POSCAR_001_20_30_1

Defaults to False.

• make_input_files (bool, optional) – Makes INCAR, POTCAR and KPOINTS files in
each folder. If make_input_files is True but make_files or save_slabs is False,
files will be saved to folders regardless. This only works with VASP input files, other formats
are not yet supported. Defaults to False.

• max_size (int, optional) – The maximum number of atoms in the slab specified to raise
warning about slab size. Even if the warning is raised, it still outputs the slabs regardless.
Defaults to 500.

• center_slab (bool, optional) – The position of the slab in the simulation cell.

– True: the slab is centered with equal amounts of vacuum above and below.

– False: the slab is at the bottom of the simulation cell with all of the vacuum on top of it.

Defaults to True.

• ox_states (None, list or dict, optional) – Add oxidation states to the bulk structure. Differ-
ent types of oxidation states specified will result in different pymatgen functions used. The
options are:

– if supplied as list: The oxidation states are added by site

e.g. [3, 2, 2, 1, -2, -2, -2, -2]

– if supplied as dict: The oxidation states are added by element

e.g. {'Fe': 3, 'O':-2}

– if None: The oxidation states are added by guess.

Defaults to None.

• is_symmetric (bool, optional) – Whether the slabs cleaved should have inversion symme-
try. If bulk is non-centrosymmetric, is_symmetric needs to be False - the function will
return no slabs as it looks for inversion symmetry. Take care checking the slabs for mirror
plane symmetry before just using them. Defaults to True.

• layers_to_relax (int, optional) – Specifies the number of layers at the top and bottom of
the slab that should be relaxed, keeps the centre constrained using selective dynamics. NB
only works for VASP files

• fmt (str, optional) – The format of the output structure files. Options include ‘cif’, ‘poscar’,
‘cssr’, ‘json’, not case sensitive. Defaults to ‘poscar’.

10 Chapter 3. surfaxe Python package

surfaxe, Release v0.1

• name (str, optional) – The name of the surface slab structure file created. Case sensitive.
Defaults to ‘POSCAR’

• config_dict (dict or str, optional) – Specifies the dictionary used for the generation of
the input files. Suppports already loaded dictionaires, yaml and json files. Surfaxe-supplied
dictionaries are PBE (pe), PBEsol (ps) and HSE06 (hse06) for single shot calculations and
PBE (pe_relax) and PBEsol (ps_relax) for relaxations. Not case sensitive. Defaults to
PBEsol (ps).

• user_incar_settings (dict, optional) – Overrides the default INCAR parameter settings.
Defaults to None.

• user_kpoints_settings (dict or Kpoints object, optional) – Overrides the default kpoints
settings. If it is supplied as dict, it should be as {'reciprocal_density': 100}. De-
faults to None.

• user_potcar_settings (dict, optional) – Overrides the default POTCAR settings. De-
faults to None.

• parallelise (bool, optional) – Use multiprocessing to generate slabs. Defaults to True.

Returns None (default) or unique_slabs (list of dicts)

surfaxe.generation.oxidation_states(structure, ox_states=None)
Adds oxidation states to the structure object if not already present

Parameters

• structure (obj) – Pymatgen structure object

• ox_states (None, list or dict, optional) – Add oxidation states to the structure. Different
types of oxidation states specified will result in different pymatgen functions used. The op-
tions are:

– if supplied as list: The oxidation states are added by site

e.g. [3, 2, 2, 1, -2, -2, -2, -2]

– if supplied as dict: The oxidation states are added by element

e.g. {'Fe': 3, 'O':-2}

– if None: The oxidation states are added by guess.

Returns Structure decorated with oxidation states

3.1.2 surfaxe.convergence module

3.1.3 surfaxe.analysis module

surfaxe.analysis.bond_analysis(structure, bond, nn_method=<Mock name='mock()'
id='140141499432528'>, ox_states=None, save_csv=True,
csv_fname='bond_analysis.csv', save_plt=False,
plt_fname='bond_analysis.png', **kwargs)

Parses the structure looking for bonds between atoms. Check the validity of the nearest neighbour method on
the bulk structure before using it on slabs.

Parameters

• structure (str) – filename of structure, takes all pymatgen-supported formats, including
pmg structure object

3.1. Submodules 11

surfaxe, Release v0.1

• bond (list) – Bond to analyse e.g. ['Y', 'O']

• nn_method (class, optional) – The coordination number prediction algorithm used. Be-
cause the nn_method is a class, the class needs to be imported from pymatgen.analysis.
local_env before it can be instantiated here. Defaults to CrystalNN().

• ox_states (None, list or dict, optional) – Add oxidation states to the structure. Different
types of oxidation states specified will result in different pymatgen functions used. The op-
tions are:

– if supplied as list: The oxidation states are added by site

e.g. [3, 2, 2, 1, -2, -2, -2, -2]

– if supplied as dict: The oxidation states are added by element

e.g. {'Fe': 3, 'O':-2}

– if None: The oxidation states are added by guess.

Defaults to None.

• save_csv (bool, optional) – Makes a csv file with the c coordinate of the first atom and bond
length. Defaults to True.

• csv_fname (str, optional) – Filename of the csv file. Defaults to 'bond_analysis.csv'.

• save_plt (bool, optional) – Make and save the bond analysis plot. Defaults to False.

• plt_fname (str, optional) – Filename of the plot. Defaults to 'bond_analysis.png'.

Returns DataFrame with the c coordinate of the first atom and bond length

surfaxe.analysis.cart_displacements(start, end, max_disp=0.1, save_txt=True,
txt_fname='cart_displacements.txt')

Produces a text file with all the magnitude of displacements of atoms in Cartesian space

Parameters

• start (str) – Filename of initial structure file in any format supported by pymatgen or py-
matgen structure object.

• end (str) – Filename of final structure file in any format supported by pymatgen or pymatgen
structure object.

• max_disp (float, optional) – The maximum displacement shown. Defaults to 0.1 Å.

• save_txt (bool, optional) – Save the displacements to file. Defaults to True.

• txt_fname (str, optional) – Filename of the csv file. Defaults to 'cart_displacement.
txt'.

Returns None (default) or DataFrame of displacements of atoms in Cartesian space

surfaxe.analysis.complex_nn(start, cut_off_dict, end=None, ox_states=None, save_csv=True,
csv_fname='nn_data.csv')

Finds the nearest neighbours for more complex structures. Uses CutOffDictNN() class as the nearest neighbour
method. Check validity on bulk structure before applying to surface slabs.

The site_index in the produced DataFrame or csv file is one-indexed and represents the atom index in the
structure.

Parameters

• start (str) – filename of structure, takes all pymatgen-supported formats.

12 Chapter 3. surfaxe Python package

surfaxe, Release v0.1

• cut_off_dict (dict) – Dictionary of bond lengths. The bonds should be specified with the
oxidation states

e.g. {('Bi3+', 'O2-'): 2.46, ('V5+', 'O2-'): 1.73}

• end (str, optional) – filename of structure to analyse, use if comparing initial and final struc-
tures. The structures must have same constituent atoms and number of sites. Defaults to
None.

• ox_states (None, list or dict, optional) – Add oxidation states to the structure. Different
types of oxidation states specified will result in different pymatgen functions used. The op-
tions are:

– if supplied as list: The oxidation states are added by site

e.g. [3, 2, 2, 1, -2, -2, -2, -2]

– if supplied as dict: The oxidation states are added by element

e.g. {'Fe': 3, 'O':-2}

– if None: The oxidation states are added by guess.

Defaults to None

• save_csv (bool, optional) – Save to a csv file. Defaults to True.

• csv_fname (str, optional) – Filename of the csv file. Defaults to 'nn_data.csv'

Returns None (default) or DataFrame containing coordination data.

surfaxe.analysis.electrostatic_potential(locpot='./LOCPOT', lattice_vector=None, save_csv=True,
csv_fname='potential.csv', save_plt=True,
plt_fname='potential.png', **kwargs)

Reads LOCPOT to get the planar and optionally macroscopic potential in c direction.

Parameters

• locpot (str, optional) – The path to the LOCPOT file. Defaults to './LOCPOT'

• lattice_vector (float, optional) – The periodicity of the slab, calculates macroscopic po-
tential with that periodicity

• save_csv (bool, optional) – Saves to csv. Defaults to True.

• csv_fname (str, optional) – Filename of the csv file. Defaults to 'potential.csv'.

• save_plt (bool, optional) – Make and save the plot of electrostatic potential. Defaults to
True.

• plt_fname (str, optional) – Filename of the plot. Defaults to 'potential.png'.

Returns DataFrame

surfaxe.analysis.simple_nn(start, end=None, ox_states=None, nn_method=<Mock name='mock()'
id='140141499432528'>, save_csv=True, csv_fname='nn_data.csv')

Finds the nearest neighbours for simple structures. Before using on slabs make sure the nn_method works with
the bulk structure.

The site_index in the produced DataFrame or csv file is one-indexed and represents the atom index in the
structure.

Parameters

• start (str) – Filename of structure file in any format supported by pymatgen

3.1. Submodules 13

surfaxe, Release v0.1

• end (str, optional) – Filename of structure file in any format supported by pymatgen. Use if
comparing initial and final structures. The structures must have same constituent atoms and
number of sites. Defaults to None.

• ox_states (None, list or dict, optional) – Add oxidation states to the structure. Different
types of oxidation states specified will result in different pymatgen functions used. The op-
tions are:

– if supplied as list: The oxidation states are added by site

e.g. [3, 2, 2, 1, -2, -2, -2, -2]

– if supplied as dict: The oxidation states are added by element

e.g. {'Fe': 3, 'O':-2}

– if None: The oxidation states are added by guess.

Defaults to None.

• nn_method (class, optional) – The coordination number prediction algorithm used. Because
the nn_method is a class, the class needs to be imported from pymatgen.analysis.local_env
before it can be instantiated here. Defaults to CrystalNN().

• save_csv (bool, optional) – Save to a csv file. Defaults to True.

• csv_fname (str, optional) – Filename of the csv file. Defaults to 'nn_data.csv'

Returns None (default) or DataFrame containing coordination data

3.1.4 surfaxe.io module

surfaxe.io.plot_bond_analysis(bond, df=None, filename=None, width=6, height=5, dpi=300, color=None,
plt_fname='bond_analysis.png')

Plots the bond distance with respect to fractional coordinate. Used in conjunction with sur-
faxe.analysis.bond_analysis.

Parameters

• bond (list) – Bond to analyse; e.g. ['Y', 'O'] order of elements in the bond must be the
same as in the Dataframe or provided file.

• df (pandas DataFrame, optional) – DataFrame from surfaxe.analysis.bond_analysis. De-
faults to None.

• filename (str, optional) – Path to csv file with data from surfaxe.analysis.bond_analysis.
Defaults to None. Either df or filename need to be supplied.

• width (float, optional) – Width of figure in inches. Defaults to 6.

• height (float, optional) – Height of figure in inches. Defaults to 5.

• dpi (int, optional) – Dots per inch. Defaults to 300.

• color (str, optional) – Color of marker. Defaults to None which defaults to surfaxe base
style

• plt_fname (str, optional) – Filename of the plot. Defaults to 'bond_analysis.png'.

Returns None, saves plot to bond_analysis.png

14 Chapter 3. surfaxe Python package

surfaxe, Release v0.1

surfaxe.io.plot_electrostatic_potential(df=None, filename=None, dpi=300, width=6, height=5,
colors=None, plt_fname='potential.png')

Plots the planar and macroscopic electrostatic potential along one direction. Can take either a DataFrame or a
potential.csv file as input.

Parameters

• df (pandas DataFrame, optional) – pandas DataFrame from sur-
faxe.analysis.electrostatic_potential. Defaults to None.

• filename (str, optional) – The filename of csv file with potential data. Defaults to None.

• dpi (int, optional) – Dots per inch. Defaults to 300.

• width (float, optional) – Width of figure in inches. Defaults to 6.

• height (float, optional) – Height of figure in inches. Defaults to 5.

• colors (list, optional) – A list of colours for planar and macroscopic potential plots. Defaults
to None, which defaults to surfaxe base style.

• plt_fname (str, optional) – Filename of the plot. Defaults to 'potential.png'.

Returns None, saves plot to potential.png

surfaxe.io.plot_enatom(df, colors=None, dpi=300, width=6, height=5, plt_fname='energy_per_atom.png')
Plots the energy per atom for all terminations. Based on surfaxe.convergence parse_energies.

Parameters

• df (pandas DataFrame) – DataFrame from parse_fols, or any other Dataframe with head-
ings ‘slab_thickness, ‘vac_thickness’, ‘slab_per_atom’, ‘time_taken’, ‘index’.

• colors (list, optional) – A list of colours for plots of different vacuum thicknesses. Defaults
to None, which defaults to surfaxe base style.

• dpi (int, optional) – Dots per inch. Defaults to 300.

• width (float, optional) – Width of figure in inches. Defaults to 6.

• height (float, optional) – Height of figure in inches. Defaults to 5.

• plt_fname (str, optional) – The name of the plot. Defaults to energy_per_atom.png. If
name with no format suffix is supplied, the format defaults to png.

Returns None, saves energy_per_atom.png

surfaxe.io.plot_surfen(df, colors=None, dpi=300, width=8, height=8, plt_fname=None)
Plots the surface energy for all terminations. Based on surfaxe.convergence parse_energies.

Parameters

• df (pandas DataFrame) – DataFrame from parse_fols, or any other Dataframe with head-
ings ‘slab_thickness’, ‘vac_thickness’, ‘surface_energy’,’surface_energy_boettger’, ‘sur-
face_energy_fm’, ‘time_taken’, ‘index’.

• colors (list, optional) – A list of colours for plots of different surface energies. Defaults to
None, which defaults to surfaxe base style.

• dpi (int, optional) – Dots per inch. Defaults to 300.

• width (float, optional) – Width of figure in inches. Defaults to 8.

• height (float, optional) – Height of figure in inches. Defaults to 8.

3.1. Submodules 15

surfaxe, Release v0.1

• plt_fname (str, optional) – The name of the plot. Defaults to None which is either
surface_energy.png for one slab index or surface_energy_slab_index.png for mul-
tiple indices.

surfaxe.io.slab_from_file(structure, hkl)
Reads in structure from the file and returns slab object.

Parameters

• structure (str) – Structure file in any format supported by pymatgen. Will accept a py-
matgen.Structure object directly.

• hkl (tuple) – Miller index of the slab in the input file.

Returns Slab object

surfaxe.io.slabs_to_file(list_of_slabs, structure, make_fols, make_input_files, config_dict, fmt, name,
**save_slabs_kwargs)

Saves the slabs to file, optionally creates input files. The function can take any relevant keyword argument for
DictSet.

Parameters

• list_of_slabs (list) – a list of slab dictionaries made with either of surfaxe.generation
get_slab functions

• structure (str) – Filename of bulk structure file in any format supported by pymatgen.

• make_fols (bool) – Makes folders for each termination and slab/vacuum thickness combi-
nations containing structure files.

– True: A Miller index folder is created, in which folders named slab_vac_index are created
to which the relevant structure files are saved.

E.g. for a (0,0,1) slab of index 1 with a slab thickness of 20 Å and vacuum thickness
of 30 Å the folder structure would be: 001/20_30_1/POSCAR

– False: The indexed structure files are put in a folder named after the bulk formula.

E.g. for a (0,0,1) MgO slab of index 1 with a slab thickness of 20 Å and vacuum
thickness of 30 Å the folder structure would be: MgO/POSCAR_001_20_30_1.vasp

• make_input_files (bool) – Makes INCAR, POTCAR and KPOINTS files in each folder.
If make_input_files is True but make_files or save_slabs is False, files will be
saved to folders regardless. This only works with VASP input files, other formats are not yet
supported. Defaults to False.

• config_dict (dict or str) – Specifies the dictionary used for the generation of the input
files.

• fmt (str, optional) – The format of the output files. Options include ‘cif’, ‘poscar’, ‘cssr’,
‘json’, not case sensitive. Defaults to ‘poscar’.

• name (str, optional) – The name of the surface slab structure file created. Case sensitive.
Defaults to ‘POSCAR’

Returns None, saves surface slabs to file

16 Chapter 3. surfaxe Python package

surfaxe, Release v0.1

3.1.5 surfaxe.vasp_data module

surfaxe.vasp_data.core_energy(core_atom, bulk_nn, orbital='1s', ox_states=None, nn_method=<Mock
name='mock()' id='140141492551248'>, outcar='OUTCAR',
structure='POSCAR')

Parses the structure and OUTCAR files for the core level energy. Check the validity of nearest neighbour method
on the bulk structure before using it on slabs.

Parameters

• core_atom (str, optional) – The symbol of atom the core state energy level should be parsed
from.

• bulk_nn (list, optional) – The symbols of the nearest neighbours of the core_atom.

• orbital (str, optional) – The orbital of core state. Defaults to 1s.

• ox_states (None, list or dict, optional) – Add oxidation states to the structure. Different
types of oxidation states specified will result in different pymatgen functions used. The op-
tions are:

– if supplied as list: The oxidation states are added by site

e.g. [3, 2, 2, 1, -2, -2, -2, -2]

– if supplied as dict: The oxidation states are added by element

e.g. {'Fe': 3, 'O':-2}

– if None: The oxidation states are added by guess.

Defaults to None.

• nn_method (class instance, optional) – The coordination number algorithm used. Because
the nn_method is a class, the class needs to be imported from pymatgen.analysis.local_env
before it can be instantiated here. Defaults to CrystalNN().

• outcar (str, optional) – Path to the OUTCAR file. Defaults to ./OUTCAR.

• structure (str, optional) – Path to the structure file in any format supported by pymatgen.
Defaults to ./POSCAR. Can also accept a pymaten.core.Structure object directly.

Returns Core state energy

surfaxe.vasp_data.process_data(bulk_per_atom, parse_hkl=True, path_to_fols=None, hkl_dict=None,
parse_core_energy=False, core_atom=None, bulk_nn=None,
parse_vacuum=False, save_csv=True, csv_fname='data.csv', **kwargs)

Parses the folders to collect all final data on relevant input and output parameters, and optionally core and vacuum
level energies.

If you are processing data for folder structures generated with generation make sure you use conver-
gence.parse_fols function. This function is for parsing full sets of information from the output of production
run calculations.

The folder structure for parsing of data is fairly flexible and can be: 1. automatically parsed if parse_hkl=True -
the function searches for folders with names three digits long in cwd (default)

e.g. it finds folders cwd/100 and cwd/010 that correspond to Miller indices (1,0,0) and (0,1,0)

2. automatically parsed from a specific working directory if path_to_fols is specified 3. manually specified using
hkl_dict, where the Miller index is mapped directly to the path to where the files are. If you are only interested
in the specified folders, do not forget to change parse_hkl=False.

e.g. hkl_dict = {(0,1,1): ‘path/to/001/files/’, (2,0,1): ‘path/to/201/files/’}

3.1. Submodules 17

surfaxe, Release v0.1

4. automatically parsed from cwd or a specific working directory in addition to a defined hkl_dict

Each of the folders must contain POSCAR and vasprun.xml files and optionally LOCPOT (or potential.csv) and
OUTCAR files if vacuum or core energy are parsed.

The function returns None by default and saves the DataFrame to a csv file. Optionally, it can return the
DataFrame.

Parameters

• bulk_per_atom (float) – Bulk energy per atom in eV per atom.

• parse_hkl (bool, optional) – If True the script parses the names of the folders to get the
Miller indices. Defaults to True.

• path_to_fols (str, optional) – Path to where surfaxe should look for the hkl folders are.
Defaults to None which searches in cwd.

• hkl_dict (dict, optional) – dictionary of tuples of Miller indices and paths to the fold-
ers the relevant outputs. Defaults to None. E.g. If the outputs of the calculations on
the (1,-1,2) slab are in folder path/to/folder/112, the hkl_dict would be: {(1,-1,2):
‘path/to/folder/112’}

• parse_core_energy (bool, optional) – If True the scripts attempts to parse core energies
from a supplied OUTCAR. Defaults to False.

• core_atom (str, optional) – The symbol of atom the core state energy level should be parsed
from. Defaults to None.

• bulk_nn (list, optional) – The symbols of the nearest neighbours of the core_atom. Defaults
to None.

• parse_vacuum (bool, optional) – if True the script attempts to parse LOCPOT using analy-
sis.electrostatic_potential to use the maximum value of planar potential as the vacuum energy
level. Defaults to True.

• save_csv (bool, optional) – If True, it writes data to a csv file. Defaults to True.

• csv_fname (str, optional) – The filename of the csv. Defaults to data.csv

Returns DataFrame

surfaxe.vasp_data.vacuum(path=None)
Gets the energy of the vacuum level. It either parses potential.csv file if available or tries to calculate planar
potential from LOCPOT. If neither file is available, function returns np.nan.

Parameters path (str, optional) – the path to potential.csv or LOCPOT files. Can be the path to a
directory in which either file is or you can specify a path that must end in .csv or contain LOCPOT.
Defaults to looking for potential.csv or LOCPOT in cwd.

Returns Maximum value of planar potential

18 Chapter 3. surfaxe Python package

CHAPTER

FOUR

TUTORIALS

We recommend starting off by looking at the dedicated tutorials. These Jupyter notebooks will guide you through most
of the functionality of the package.

The tutorials can also be run interactively on Binder.

4.1 Using configuration dictionaries

One of the most powerful parts of surfaxe is its ability to make all VASP input files needed for convergence testing.
To do so surfaxe makes use of configuration dictionaries (config dicts for short). These are python dictionaries that
contain information used to set up INCAR, KPOINTS and POTCAR files.

For example, if we were interested in setting up a single shot PBEsol calculation on SnO2 slabs, we could set up the
config dict as follows:

config_dict = {
"INCAR": {

"ALGO": "Normal",
"EDIFF": 1e-06,
"EDIFFG": -0.01,
"ENCUT": 500,
"GGA": "PS",
"ISMEAR": 0,
"ISYM": 2,
"IWAVPR": 1,
"LASPH": true,
"LORBIT": 11,
"LREAL": "auto",
"NELM": 200,
"NSW": 0,
"PREC": "Accurate",
"SIGMA": 0.02

},
"KPOINTS": {

"reciprocal_density": 55
},
"POTCAR": {

"Sn": "Sn_d",
"O" : "O"

}
}

19

https://github.com/SMTG-UCL/surfaxe/tree/master/tutorials
https://mybinder.org/v2/gh/SMTG-UCL/surfaxe/HEAD?filepath=tutorials

surfaxe, Release v0.1

Alternatively, one of the ready-made surfaxe config dicts (PBEsol.json, PBEsol_relax.json, PBE.
json, PBE_relax.json or HSE06.json) can be used and further modified using user_incar_settings,
user_kpoints_settings and user_potcar_settings. The relax config dicts contain additional parameters
necessary for geometric relaxations of slabs. The POTCAR functional (i.e. PBE, PBE_54) can be chosen with
user_potcar_functional.

Pymatgen documentation covers exact behaviour of the user_incar_settings, user_kpoints_settings and
user_potcar_settings and all additional keyword arguments that can be supplied to slab generation scripts.

20 Chapter 4. Tutorials

https://pymatgen.org/pymatgen.io.vasp.sets.html#pymatgen.io.vasp.sets.DictSet

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

21

surfaxe, Release v0.1

22 Chapter 5. Indices and tables

PYTHON MODULE INDEX

s
surfaxe, 9
surfaxe.analysis, 11
surfaxe.generation, 9
surfaxe.io, 14
surfaxe.vasp_data, 17

23

surfaxe, Release v0.1

24 Python Module Index

INDEX

B
bond_analysis() (in module surfaxe.analysis), 11

C
cart_displacements() (in module surfaxe.analysis),

12
complex_nn() (in module surfaxe.analysis), 12
core_energy() (in module surfaxe.vasp_data), 17

E
electrostatic_potential() (in module sur-

faxe.analysis), 13

G
generate_slabs() (in module surfaxe.generation), 9

M
module

surfaxe, 9
surfaxe.analysis, 11
surfaxe.generation, 9
surfaxe.io, 14
surfaxe.vasp_data, 17

O
oxidation_states() (in module surfaxe.generation),

11

P
plot_bond_analysis() (in module surfaxe.io), 14
plot_electrostatic_potential() (in module sur-

faxe.io), 14
plot_enatom() (in module surfaxe.io), 15
plot_surfen() (in module surfaxe.io), 15
process_data() (in module surfaxe.vasp_data), 17

S
simple_nn() (in module surfaxe.analysis), 13
slab_from_file() (in module surfaxe.io), 16
slabs_to_file() (in module surfaxe.io), 16
surfaxe

module, 9
surfaxe.analysis

module, 11
surfaxe.generation

module, 9
surfaxe.io

module, 14
surfaxe.vasp_data

module, 17

V
vacuum() (in module surfaxe.vasp_data), 18

25

	Getting started
	Introduction
	Installation
	Usage

	Command Line Interface (CLI)
	Pre-processing commands
	Post-processing commands
	Analysis commands
	Data commands
	YAML input files

	surfaxe Python package
	Submodules
	surfaxe.generation module
	surfaxe.convergence module
	surfaxe.analysis module
	surfaxe.io module
	surfaxe.vasp_data module

	Tutorials
	Using configuration dictionaries

	Indices and tables
	Python Module Index
	Index

