

Welcome to surfaxe!

View the code on Github here [http://github.com/SMTG-UCL/surfaxe].

Contents:

	Getting started
	Introduction

	Installation

	Usage

	Command Line Interface (CLI)
	Pre-processing commands

	Post-processing commands

	Analysis commands

	Data commands

	YAML input files

	surfaxe Python package
	Submodules
	surfaxe.generation module

	surfaxe.convergence module

	surfaxe.analysis module

	surfaxe.io module

	surfaxe.vasp_data module

	Tutorials
	Using configuration dictionaries

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Introduction

The purpose of surfaxe is to simplify the calculation
of surface properties of inorganic compounds using first-principles codes.
The package includes pre-processing tools to cleave surfaces from the bulk, automatically
set up calculation directories and facilitate convergence testing, as well as
post-processing tools to calcualte surface energies, electrostatic potentials, and produce
publication-qaulity plots.

Installation

Installation will be via pip in the near future. For now, please clone the repository
and install the latest stable version:

git clone https://github.com/SMTG-UCL/surfaxe.git
cd surfaxe
pip install -e .

The -e is optional and will install the project in developer (editable) mode.

For the code to generate VASP input files along with the surface slabs,
pymatgen POTCAR environment [https://pymatgen.org/installation.html#potcar-setup]
must be set up correctly.

Usage

In general, there are two ways to use surfaxe:
(i) at the command line or (ii) using python in scripts or notebooks.

Take a look at our command line interface (CLI) examples for an overview
of the CLI tools available.

There is full documentation for all modules (have a browse of the side bar on the left)
if you would rather use the python API directly.

Command Line Interface (CLI)

While surfaxe has a full python API (see our tutorials page for example usage) it also has an
intuitive command line interface (CLI). Below are some simple examples of what you can do with
surfaxe at the command line.

You can get a full list of accepted flags and what they do for each command using
the --help or -h flag, e.g.:

$ surfaxe-bonds -h

> usage: surfaxe-bonds [-h] [-s STRUCTURE] [-b BOND [BOND ...]]
 [--oxi-list OX_STATES_LIST [OX_STATES_LIST ...]]
 [--oxi-dict OX_STATES_DICT] [--no-csv]
 [--csv-fname CSV_FNAME] [--no-plot]
 [--plt-fname PLT_FNAME] [-c COLOR] [--width WIDTH]
 [--height HEIGHT] [--dpi DPI] [--yaml]

Parses the structure looking for bonds between atoms. Check the validity of
the nearest neighbour method on the bulk structure before using it on slabs.

optional arguments:
-h, --help show this help message and exit
-s STRUCTURE, --structure STRUCTURE
 Filename of structure file in any format supported by
 pymatgen (default: POSCAR
-b BOND [BOND ...], --bond BOND [BOND ...]
 List of elements e.g. Ti O for a Ti-O bond
--oxi-list OX_STATES_LIST [OX_STATES_LIST ...]
 Add oxidation states to the structure as a list
 e.g. 3 3 -2 -2 -2
--oxi-dict OX_STATES_DICT
 Add oxidation states to the structure as a dictionary
 e.g. Fe:3,O:-2
--no-csv Prints data to terminal
--csv-fname CSV_FNAME
 Filename of the csv file (default: bond_analysis.csv)
--no-plot Turns off plotting
--plt-fname PLT_FNAME
 Filename of the plot (default: bond_analysis.png)
-c COLOR, --color COLOR
 Color of the marker in any format supported by mpl
 e.g. "#eeefff" hex colours starting with # need to be
 surrounded with quotation marks
--width WIDTH Width of the figure in inches (default: 6)
--height HEIGHT Height of the figure in inches (default: 5)
--dpi DPI Dots per inch (default: 300)
--yaml YAML Read all args from a yaml config file. Completely
 overrides any other flags set

The behaviour of default parameters of the functions is extensively documented in
the surfaxe python package section of the docs.

Pre-processing commands

surfaxe-generate-slabs: Generates all unique slabs with specific Miller indices or
up to a maximum Miller index for a set of slab and vacuum thicknesses.

Example: surfaxe-generate -s bulk_structure.cif --hkl 1,1,0 -t 20 40 -v 20 40 -f generates
all slabs for the (1,1,0) direction for minimum slab and vacuum thicknesses of 20 Å and 40 Å.
The -f option organises these into subdirectories with all required VASP input
files required to run singleshot calculations uisng default settings. It includes all combinations
for zero-dipole terminations with inversion symmetry.
The directory structure produced is:

100/ <-- Miller index
 ├── 20_20_0/ <-- slab-thickness_vacuum-thickness_termination-number
 ├── 20_40_0/
 ├── 40_20_0/
 └── 40_40_0/
 ├── POSCAR <-- VASP files
 ├── INCAR
 ├── POTCAR
 └── KPOINTS

Note: The hkl flag must be comma-separated with no spaces and the list of thicknesses and
vacuums must be space-separated.

Note: To use the :mod:`-f` option you must first set up the
`pymatgen POTCAR environment <https://pymatgen.org/installation.html#potcar-setup>`_.

Similarly, to above the script can be modified to consider multiple Miller indices.

Example: surfaxe-generate -s bulk_structure.cif --hkl 1,1,0 1,1,1 -t 20 40 -v 20 40 -f
generates all (1,1,0) and (1,1,1) slabs with minimum slab and vacuum thicknesses of 20 Å and 40 Å.

Note: h,k,l are comma-separated with no spaces, while the two (or more) Miller indices are space-separated.

Lastly, a maximum hkl value can be supplied as an integer so that the script finds all
zero-dipole slabs up to that maximum Miller index.

Example: surfaxe-generate -s SnO2.cif --hkl 2 -t 20 40 -v 30 generates all slabs with Miller
indices up to a maximum value of 2, with minimum slab thicknesses of 20 Å and of 40 Å, and
minimum vacuum thickness of 30 Å.

Post-processing commands

surfaxe-parse-energies: Parses data produced by electronic structure codes once calculations
have been run in then directory structures produced by the pre-processing commands.
Can optionally collect vacuum and core energies.

Example: surfaxe-parse-energies --hkl 0,0,1 -b 8.83099 saves a csv file of surface energies
and energies per atom for each slab-vacuum combination. See the Tutorials directory for examples.

surfaxe-plot-surfen and surfaxe-plot-enatom can be used to customise the surface
energy and energy per atom plots independetnly based on the data already collated
with surfaxe-parse-energies.

surfaxe-parse-structures: Parses the (relaxed) structures from convergence calculations
and collates them into the same json format as is created when surface slabs are generated. Can
optionally perform bond analysis for multiple specified bonds. Useful for comparison of relaxed
and unrelaxed surfaces slabs and determination of convergence.

Analysis commands

surfaxe-potential: Reads the local electrostatic potential file and plots the planar
and macroscopic averages normal to the surface. Currently only the VASP LOCPOT
file is supported as input.

Example: surfaxe-potential -l LOCPOT -v 11.5 produces a plot assuming a lattice vector of
11.5 Angstroms and saves the plot data to a csv file.

surfaxe-bonds: Analyse bonding in the structure using Pymatgen’s local_env module.
Average bond lengths for each pair of species of interest can be plotted as a function
of c lattice vector (normal to the slab surface). This can be useful for checking whether
the center of the slab has converged, where bond distances should be bulk-like.

Example: surfaxe-bonds -s CONTCAR -b Sn O plots the average Sn-O bond length from the
VASP output structure file. A csv file of the data plotted is also produced.

surfaxe-plot-potential and surfaxe-plot-bonds can be used to generate the
plots based on the data collated with surfaxe-potential and surfaxe-bonds,
allowing customisation of plots without having to re-analyse the data. All plotting
functionality is accessible through the main functions as well.

surfaxe-simplenn and surfaxe-complexnn: Analyse the bonding in the slab, again using Pymatgen
functions. simplenn is faster, but less reliable for systems with more complex bonding.
complexnn is more robust but requires a dictionary of cutoff bond lengths to be supplied
for each pair of species. See the analysis tutorial for further explanation.

Example: surfaxe-complexnn -s CONTCAR_bivo4 -b Bi3+ O2- 2.46 V5+ O2- 1.73 will
analyse the coordination of atoms in this BiVO4 slab and save them to a csv file.

Data commands

There are some simple convenience commands that can also be used to extract key values from
raw data files produced by solid state codes. Currently only commands relating to VASP output
files are included, which rely on the surfaxe vasp_data module. We hope to expand this
in the future.

surfaxe-vacuum and surfaxe-core can be used to extract vacuum and core energies, respectively,
that are needed to calculate absolute electron energies (ionisation potential and electron affinity).
See the Macrodensity [https://www.github.com/WMD-group/macrodensity] tutorials for more information
on the steps needed to do this.

YAML input files

Most CLI commands allow use of YAML input files containing all the arguments which cannot be
used in conjunction with other command line argument flags. This is done by specifying
the --yaml flag which overrides any other flags set in command line by loading the
surfaxe_config.yaml file.

Sample YAML input files for each of the functions, with defaults and comments are in
the surfaxe/cli/templates folder.
All **kwargs of the main function can be passed in the YAML file.

Example: Generation of (1,0,1) CdTe slabs could easily customised so that all VASP
input files are created with specific INCAR tags using the following config.yaml file:

structure: CdTe.cif
hkl: (1,0,1)
thicknesses: [20, 40]
vacuums: [20, 40]
make_fols: True
make_files: True
max_size: 500
center_slab: True
ox_states:
 Cd: 2
 Te: -2
fmt: poscar
name: POSCAR
config_dict: PBE_config.json
user_incar_settings:
 ENCUT: 460
 KPAR: 3
user_kpoints_settings:
 reciprocal_density: 35

The slabs would then be generated using surfaxe-gethkl --yaml config.yaml

surfaxe Python package

Please peruse the submodules at your leisure

Submodules

	surfaxe.generation module

	surfaxe.convergence module

	surfaxe.analysis module

	surfaxe.io module

	surfaxe.vasp_data module

surfaxe.generation module

	
surfaxe.generation.generate_slabs(structure, hkl, thicknesses, vacuums, save_slabs=True, save_metadata=True, json_fname=None, make_fols=False, make_input_files=False, max_size=500, center_slab=True, ox_states=None, is_symmetric=True, layers_to_relax=None, fmt='poscar', name='POSCAR', config_dict=None, user_incar_settings=None, user_kpoints_settings=None, user_potcar_settings=None, parallelise=True, **kwargs)

	Generates all unique slabs for a specified Miller indices or up to a maximum
Miller index with minimum slab and vacuum thicknesses. It includes all
combinations for multiple zero dipole symmetric terminations for
the same Miller index.

The function returns None by default and generates either:

	POSCAR_hkl_slab_vac_index.vasp (default)

	hkl/slab_vac_index folders with structure files

	hkl/slab_vac_index with all VASP input files

Or if save_slabs=False a list of dicts of all unique slabs is returned.

	Parameters

	
	structure (str or pmg Structure obj) – Filename of structure file in
any format supported by pymatgen or pymatgen structure object.

	hkl (tuple, list or int) – Miller index as tuple, a list of Miller
indices or a maximum index up to which the search should be
performed. E.g. if searching for slabs up to (2,2,2) hkl=2

	thicknesses (list) – The minimum size of the slab in Angstroms.

	vacuums (list) – The minimum size of the vacuum in Angstroms.

	save_slabs (bool, optional) – Whether to save the slabs to file.
Defaults to True.

	save_metadata (bool, optional) – Whether to save the slabs’ metadata to
file. Saves the entire slab object to a json file
Defaults to True.

	json_fname (str, optional) – Filename of json metadata file. Defaults to
bulk_formula_metadata.json

	make_fols (bool, optional) – Makes folders for each termination
and slab/vacuum thickness combinations containing structure files.

	True: A Miller index folder is created, in which folders
named slab_vac_index are created to which the relevant structure
files are saved.

E.g. for a (0,0,1) slab of index 1 with a slab thickness of
20 Å and vacuum thickness of 30 Å the folder structure would
be: 001/20_30_1/POSCAR

	False: The indexed structure files are put in a folder named
after the bulk formula.

E.g. for a (0,0,1) MgO slab of index 1 with a slab thickness
of 20 Å and vacuum thickness of 30 Å the folder structure
would be: MgO/POSCAR_001_20_30_1

Defaults to False.

	make_input_files (bool, optional) – Makes INCAR, POTCAR and
KPOINTS files in each folder. If make_input_files is True
but make_files or save_slabs is False, files will be
saved to folders regardless. This only works with VASP input files,
other formats are not yet supported. Defaults to False.

	max_size (int, optional) – The maximum number of atoms in the slab
specified to raise warning about slab size. Even if the warning is
raised, it still outputs the slabs regardless. Defaults to 500.

	center_slab (bool, optional) – The position of the slab in the
simulation cell.

	True: the slab is centered with equal amounts of
vacuum above and below.

	False: the slab is at the bottom of the simulation cell with
all of the vacuum on top of it.

Defaults to True.

	ox_states (None, list or dict, optional) – Add oxidation states
to the bulk structure. Different types of oxidation states specified
will result in different pymatgen functions used. The options are:

	if supplied as list: The oxidation states are added by site

e.g. [3, 2, 2, 1, -2, -2, -2, -2]

	if supplied as dict: The oxidation states are added by element

e.g. {'Fe': 3, 'O':-2}

	if None: The oxidation states are added by guess.

Defaults to None.

	is_symmetric (bool, optional) – Whether the slabs cleaved should
have inversion symmetry. If bulk is non-centrosymmetric,
is_symmetric needs to be False - the function will return no
slabs as it looks for inversion symmetry. Take care checking the
slabs for mirror plane symmetry before just using them. Defaults to
True.

	layers_to_relax (int, optional) – Specifies the number of layers at the
top and bottom of the slab that should be relaxed, keeps the centre
constrained using selective dynamics. NB only works for VASP files

	fmt (str, optional) – The format of the output structure files. Options
include ‘cif’, ‘poscar’, ‘cssr’, ‘json’, not case sensitive.
Defaults to ‘poscar’.

	name (str, optional) – The name of the surface slab structure file
created. Case sensitive. Defaults to ‘POSCAR’

	config_dict (dict or str, optional) – Specifies the dictionary used
for the generation of the input files. Suppports already loaded
dictionaires, yaml and json files. Surfaxe-supplied dictionaries
are PBE (pe), PBEsol (ps) and HSE06 (hse06) for single
shot calculations and PBE (pe_relax) and PBEsol (ps_relax)
for relaxations. Not case sensitive. Defaults to PBEsol (ps).

	user_incar_settings (dict, optional) – Overrides the default INCAR
parameter settings. Defaults to None.

	user_kpoints_settings (dict or Kpoints object, optional) – Overrides the default kpoints settings. If it is supplied
as dict, it should be as {'reciprocal_density': 100}. Defaults
to None.

	user_potcar_settings (dict, optional) – Overrides the default POTCAR
settings. Defaults to None.

	parallelise (bool, optional) – Use multiprocessing to generate
slabs. Defaults to True.

	Returns

	None (default)
or unique_slabs (list of dicts)

	
surfaxe.generation.oxidation_states(structure, ox_states=None)

	Adds oxidation states to the structure object if not already present

	Parameters

	
	structure (obj) – Pymatgen structure object

	ox_states (None, list or dict, optional) – Add oxidation states
to the structure. Different types of oxidation states specified will
result in different pymatgen functions used. The options are:

	if supplied as list: The oxidation states are added by site

e.g. [3, 2, 2, 1, -2, -2, -2, -2]

	if supplied as dict: The oxidation states are added by element

e.g. {'Fe': 3, 'O':-2}

	if None: The oxidation states are added by guess.

	Returns

	Structure decorated with oxidation states

surfaxe.convergence module

surfaxe.analysis module

	
surfaxe.analysis.bond_analysis(structure, bond, nn_method=<Mock name='mock()' id='140428077570128'>, ox_states=None, save_csv=True, csv_fname='bond_analysis.csv', save_plt=False, plt_fname='bond_analysis.png', **kwargs)

	Parses the structure looking for bonds between atoms. Check the validity of
the nearest neighbour method on the bulk structure before using it on slabs.

	Parameters

	
	structure (str) – filename of structure, takes all pymatgen-supported
formats, including pmg structure object

	bond (list) – Bond to analyse e.g. ['Y', 'O']

	nn_method (class, optional) – The coordination number prediction
algorithm used. Because the nn_method is a class, the class
needs to be imported from pymatgen.analysis.local_env before it
can be instantiated here. Defaults to CrystalNN().

	ox_states (None, list or dict, optional) – Add oxidation states
to the structure. Different types of oxidation states specified will
result in different pymatgen functions used. The options are:

	if supplied as list: The oxidation states are added by site

e.g. [3, 2, 2, 1, -2, -2, -2, -2]

	if supplied as dict: The oxidation states are added by element

e.g. {'Fe': 3, 'O':-2}

	if None: The oxidation states are added by guess.

Defaults to None.

	save_csv (bool, optional) – Makes a csv file with the c coordinate of
the first atom and bond length. Defaults to True.

	csv_fname (str, optional) – Filename of the csv file. Defaults to
'bond_analysis.csv'.

	save_plt (bool, optional) – Make and save the bond analysis plot.
Defaults to False.

	plt_fname (str, optional) – Filename of the plot. Defaults to
'bond_analysis.png'.

	Returns

	DataFrame with the c coordinate of the first atom and bond length

	
surfaxe.analysis.cart_displacements(start, end, max_disp=0.1, save_txt=True, txt_fname='cart_displacements.txt')

	Produces a text file with all the magnitude of displacements of atoms
in Cartesian space

	Parameters

	
	start (str) – Filename of initial structure file in any format
supported by pymatgen or pymatgen structure object.

	end (str) – Filename of final structure file in any format supported
by pymatgen or pymatgen structure object.

	max_disp (float, optional) – The maximum displacement shown. Defaults
to 0.1 Å.

	save_txt (bool, optional) – Save the displacements to file. Defaults to
True.

	txt_fname (str, optional) – Filename of the csv file. Defaults to
'cart_displacement.txt'.

	Returns

	None (default) or DataFrame of displacements of atoms in Cartesian space

	
surfaxe.analysis.complex_nn(start, cut_off_dict, end=None, ox_states=None, save_csv=True, csv_fname='nn_data.csv')

	Finds the nearest neighbours for more complex structures. Uses CutOffDictNN()
class as the nearest neighbour method. Check validity on bulk structure
before applying to surface slabs.

The site_index in the produced DataFrame or csv file is one-indexed and
represents the atom index in the structure.

	Parameters

	
	start (str) – filename of structure, takes all pymatgen-supported formats.

	cut_off_dict (dict) – Dictionary of bond lengths. The bonds should be
specified with the oxidation states

e.g. {('Bi3+', 'O2-'): 2.46, ('V5+', 'O2-'): 1.73}

	end (str, optional) – filename of structure to analyse, use if
comparing initial and final structures. The structures must have
same constituent atoms and number of sites. Defaults to None.

	ox_states (None, list or dict, optional) – Add oxidation states
to the structure. Different types of oxidation states specified will
result in different pymatgen functions used. The options are:

	if supplied as list: The oxidation states are added by site

e.g. [3, 2, 2, 1, -2, -2, -2, -2]

	if supplied as dict: The oxidation states are added by element

e.g. {'Fe': 3, 'O':-2}

	if None: The oxidation states are added by guess.

Defaults to None

	save_csv (bool, optional) – Save to a csv file. Defaults to True.

	csv_fname (str, optional) – Filename of the csv file. Defaults to
'nn_data.csv'

	Returns
	None (default) or DataFrame containing coordination data.

	
surfaxe.analysis.electrostatic_potential(locpot='./LOCPOT', lattice_vector=None, save_csv=True, csv_fname='potential.csv', save_plt=True, plt_fname='potential.png', **kwargs)

	Reads LOCPOT to get the planar and optionally macroscopic potential in
c direction.

	Parameters

	
	locpot (str, optional) – The path to the LOCPOT file. Defaults to
'./LOCPOT'

	lattice_vector (float, optional) – The periodicity of the slab,
calculates macroscopic potential with that periodicity

	save_csv (bool, optional) – Saves to csv. Defaults to True.

	csv_fname (str, optional) – Filename of the csv file. Defaults
to 'potential.csv'.

	save_plt (bool, optional) – Make and save the plot of electrostatic
potential. Defaults to True.

	plt_fname (str, optional) – Filename of the plot. Defaults to
'potential.png'.

	Returns

	DataFrame

	
surfaxe.analysis.simple_nn(start, end=None, ox_states=None, nn_method=<Mock name='mock()' id='140428077570128'>, save_csv=True, csv_fname='nn_data.csv')

	Finds the nearest neighbours for simple structures. Before using on slabs
make sure the nn_method works with the bulk structure.

The site_index in the produced DataFrame or csv file is one-indexed and
represents the atom index in the structure.

	Parameters

	
	start (str) – Filename of structure file in any format supported by
pymatgen

	end (str, optional) – Filename of structure file in any format
supported by pymatgen. Use if comparing initial and final structures.
The structures must have same constituent atoms and number of sites.
Defaults to None.

	ox_states (None, list or dict, optional) – Add oxidation states
to the structure. Different types of oxidation states specified will
result in different pymatgen functions used. The options are:

	if supplied as list: The oxidation states are added by site

e.g. [3, 2, 2, 1, -2, -2, -2, -2]

	if supplied as dict: The oxidation states are added by element

e.g. {'Fe': 3, 'O':-2}

	if None: The oxidation states are added by guess.

Defaults to None.

	nn_method (class, optional) – The coordination number prediction
algorithm used. Because the nn_method is a class, the class
needs to be imported from pymatgen.analysis.local_env before it
can be instantiated here. Defaults to CrystalNN().

	save_csv (bool, optional) – Save to a csv file. Defaults to True.

	csv_fname (str, optional) – Filename of the csv file. Defaults to
'nn_data.csv'

	Returns
	None (default) or DataFrame containing coordination data

surfaxe.io module

	
surfaxe.io.plot_bond_analysis(bond, df=None, filename=None, width=6, height=5, dpi=300, color=None, plt_fname='bond_analysis.png')

	Plots the bond distance with respect to fractional coordinate. Used in
conjunction with surfaxe.analysis.bond_analysis.

	Parameters

	
	bond (list) – Bond to analyse; e.g. ['Y', 'O'] order of elements
in the bond must be the same as in the Dataframe or provided file.

	df (pandas DataFrame, optional) – DataFrame from
surfaxe.analysis.bond_analysis. Defaults to None.

	filename (str, optional) – Path to csv file with data from
surfaxe.analysis.bond_analysis. Defaults to None.
Either df or filename need to be supplied.

	width (float, optional) – Width of figure in inches. Defaults to 6.

	height (float, optional) – Height of figure in inches. Defaults to
5.

	dpi (int, optional) – Dots per inch. Defaults to 300.

	color (str, optional) – Color of marker. Defaults to None which
defaults to surfaxe base style

	plt_fname (str, optional) – Filename of the plot. Defaults to
'bond_analysis.png'.

	Returns

	None, saves plot to bond_analysis.png

	
surfaxe.io.plot_electrostatic_potential(df=None, filename=None, dpi=300, width=6, height=5, colors=None, plt_fname='potential.png')

	Plots the planar and macroscopic electrostatic potential along one
direction. Can take either a DataFrame or a potential.csv file as input.

	Parameters

	
	df (pandas DataFrame, optional) – pandas DataFrame from
surfaxe.analysis.electrostatic_potential. Defaults to None.

	filename (str, optional) – The filename of csv file with potential
data. Defaults to None.

	dpi (int, optional) – Dots per inch. Defaults to 300.

	width (float, optional) – Width of figure in inches. Defaults to 6.

	height (float, optional) – Height of figure in inches. Defaults to
5.

	colors (list, optional) – A list of colours for planar and macroscopic
potential plots. Defaults to None, which defaults to surfaxe
base style.

	plt_fname (str, optional) – Filename of the plot. Defaults to
'potential.png'.

	Returns

	None, saves plot to potential.png

	
surfaxe.io.plot_enatom(df, colors=None, dpi=300, width=6, height=5, plt_fname='energy_per_atom.png')

	Plots the energy per atom for all terminations. Based on surfaxe.convergence
parse_energies.

	Parameters

	
	df (pandas DataFrame) – DataFrame from parse_fols, or any other
Dataframe with headings ‘slab_thickness, ‘vac_thickness’,
‘slab_per_atom’, ‘time_taken’, ‘index’.

	colors (list, optional) – A list of colours for plots of different
vacuum thicknesses. Defaults to None, which defaults to
surfaxe base style.

	dpi (int, optional) – Dots per inch. Defaults to 300.

	width (float, optional) – Width of figure in inches. Defaults to 6.

	height (float, optional) – Height of figure in inches. Defaults to
5.

	plt_fname (str, optional) – The name of the plot. Defaults to
energy_per_atom.png. If name with no format suffix is supplied,
the format defaults to png.

	Returns

	None, saves energy_per_atom.png

	
surfaxe.io.plot_surfen(df, colors=None, dpi=300, width=8, height=8, plt_fname=None)

	Plots the surface energy for all terminations. Based on surfaxe.convergence
parse_energies.

	Parameters

	
	df (pandas DataFrame) – DataFrame from parse_fols, or any other
Dataframe with headings ‘slab_thickness’, ‘vac_thickness’,
‘surface_energy’,’surface_energy_boettger’, ‘surface_energy_fm’,
‘time_taken’, ‘index’.

	colors (list, optional) – A list of colours for plots of different
surface energies. Defaults to None, which defaults to
surfaxe base style.

	dpi (int, optional) – Dots per inch. Defaults to 300.

	width (float, optional) – Width of figure in inches. Defaults to 8.

	height (float, optional) – Height of figure in inches. Defaults to
8.

	plt_fname (str, optional) – The name of the plot. Defaults to None
which is either surface_energy.png for one slab index or
surface_energy_slab_index.png for multiple indices.

	
surfaxe.io.slab_from_file(structure, hkl)

	Reads in structure from the file and returns slab object.

	Parameters

	
	structure (str) – Structure file in any format supported by pymatgen.
Will accept a pymatgen.Structure object directly.

	hkl (tuple) – Miller index of the slab in the input file.

	Returns

	Slab object

	
surfaxe.io.slabs_to_file(list_of_slabs, structure, make_fols, make_input_files, config_dict, fmt, name, **save_slabs_kwargs)

	Saves the slabs to file, optionally creates input files. The function can
take any relevant keyword argument for DictSet.

	Parameters

	
	list_of_slabs (list) – a list of slab dictionaries made with either of
surfaxe.generation get_slab functions

	structure (str) – Filename of bulk structure file in any format
supported by pymatgen.

	make_fols (bool) – Makes folders for each termination and slab/vacuum
thickness combinations containing structure files.

	True: A Miller index folder is created, in which folders
named slab_vac_index are created to which the relevant structure
files are saved.

E.g. for a (0,0,1) slab of index 1 with a slab thickness of
20 Å and vacuum thickness of 30 Å the folder structure would
be: 001/20_30_1/POSCAR

	False: The indexed structure files are put in a folder named
after the bulk formula.

E.g. for a (0,0,1) MgO slab of index 1 with a slab thickness
of 20 Å and vacuum thickness of 30 Å the folder structure
would be: MgO/POSCAR_001_20_30_1.vasp

	make_input_files (bool) – Makes INCAR, POTCAR and KPOINTS files in each
folder. If make_input_files is True but make_files or
save_slabs is False, files will be saved to folders
regardless. This only works with VASP input files,
other formats are not yet supported. Defaults to False.

	config_dict (dict or str) – Specifies the dictionary used for the
generation of the input files.

	fmt (str, optional) – The format of the output files. Options include
‘cif’, ‘poscar’, ‘cssr’, ‘json’, not case sensitive.
Defaults to ‘poscar’.

	name (str, optional) – The name of the surface slab structure file
created. Case sensitive. Defaults to ‘POSCAR’

	Returns

	None, saves surface slabs to file

surfaxe.vasp_data module

	
surfaxe.vasp_data.core_energy(core_atom, bulk_nn, orbital='1s', ox_states=None, nn_method=<Mock name='mock()' id='140428116002192'>, outcar='OUTCAR', structure='POSCAR')

	Parses the structure and OUTCAR files for the core level energy. Check the
validity of nearest neighbour method on the bulk structure before using it
on slabs.

	Parameters

	
	core_atom (str, optional) – The symbol of atom the core state energy
level should be parsed from.

	bulk_nn (list, optional) – The symbols of the nearest neighbours of the
core_atom.

	orbital (str, optional) – The orbital of core state. Defaults to 1s.

	ox_states (None, list or dict, optional) – Add oxidation states
to the structure. Different types of oxidation states specified will
result in different pymatgen functions used. The options are:

	if supplied as list: The oxidation states are added by site

e.g. [3, 2, 2, 1, -2, -2, -2, -2]

	if supplied as dict: The oxidation states are added by element

e.g. {'Fe': 3, 'O':-2}

	if None: The oxidation states are added by guess.

Defaults to None.

	nn_method (class instance, optional) – The coordination number
algorithm used. Because the nn_method is a class, the class
needs to be imported from pymatgen.analysis.local_env before it
can be instantiated here. Defaults to CrystalNN().

	outcar (str, optional) – Path to the OUTCAR file. Defaults to
./OUTCAR.

	structure (str, optional) – Path to the structure file in any format
supported by pymatgen. Defaults to ./POSCAR. Can also accept a
pymaten.core.Structure object directly.

	Returns

	Core state energy

	
surfaxe.vasp_data.process_data(bulk_per_atom, parse_hkl=True, path_to_fols=None, hkl_dict=None, parse_core_energy=False, core_atom=None, bulk_nn=None, parse_vacuum=False, save_csv=True, csv_fname='data.csv', **kwargs)

	Parses the folders to collect all final data on relevant input and output
parameters, and optionally core and vacuum level energies.

If you are processing data for folder structures generated with
generation make sure you use convergence.parse_fols function. This
function is for parsing full sets of information from the output of
production run calculations.

The folder structure for parsing of data is fairly flexible and can be:
1. automatically parsed if parse_hkl=True - the function searches for
folders with names three digits long in cwd (default)

e.g. it finds folders cwd/100 and cwd/010 that correspond to Miller
indices (1,0,0) and (0,1,0)

2. automatically parsed from a specific working directory if path_to_fols
is specified
3. manually specified using hkl_dict, where the Miller index is mapped
directly to the path to where the files are. If you are only interested in
the specified folders, do not forget to change parse_hkl=False.

	e.g. hkl_dict = {(0,1,1): ‘path/to/001/files/’,
	(2,0,1): ‘path/to/201/files/’}

4. automatically parsed from cwd or a specific working directory in addition
to a defined hkl_dict

Each of the folders must contain POSCAR and vasprun.xml files and optionally
LOCPOT (or potential.csv) and OUTCAR files if vacuum or core energy are
parsed.

The function returns None by default and saves the DataFrame to a csv file.
Optionally, it can return the DataFrame.

	Parameters

	
	bulk_per_atom (float) – Bulk energy per atom in eV per atom.

	parse_hkl (bool, optional) – If True the script parses the names
of the folders to get the Miller indices. Defaults to True.

	path_to_fols (str, optional) – Path to where surfaxe should look for
the hkl folders are. Defaults to None which searches in cwd.

	hkl_dict (dict, optional) – dictionary of tuples of Miller indices
and paths to the folders the relevant outputs. Defaults to None.
E.g. If the outputs of the calculations on the (1,-1,2) slab are in
folder path/to/folder/112, the hkl_dict would be:
{(1,-1,2): ‘path/to/folder/112’}

	parse_core_energy (bool, optional) – If True the scripts attempts to
parse core energies from a supplied OUTCAR. Defaults to False.

	core_atom (str, optional) – The symbol of atom the core state energy
level should be parsed from. Defaults to None.

	bulk_nn (list, optional) – The symbols of the nearest neighbours of the
core_atom. Defaults to None.

	parse_vacuum (bool, optional) – if True the script attempts
to parse LOCPOT using analysis.electrostatic_potential to use the
maximum value of planar potential as the vacuum energy level.
Defaults to True.

	save_csv (bool, optional) – If True, it writes data to a csv file.
Defaults to True.

	csv_fname (str, optional) – The filename of the csv. Defaults to
data.csv

	Returns

	DataFrame

	
surfaxe.vasp_data.vacuum(path=None)

	Gets the energy of the vacuum level. It either parses potential.csv file if
available or tries to calculate planar potential from LOCPOT. If neither
file is available, function returns np.nan.

	Parameters

	path (str, optional) – the path to potential.csv or LOCPOT files.
Can be the path to a directory in which either file is or you can
specify a path that must end in .csv or contain LOCPOT. Defaults to
looking for potential.csv or LOCPOT in cwd.

	Returns

	Maximum value of planar potential

Tutorials

We recommend starting off by looking at the dedicated tutorials. [https://github.com/SMTG-UCL/surfaxe/tree/master/tutorials]
These Jupyter notebooks will guide you through most of the functionality of the package.

The tutorials can also be run interactively on Binder. [https://mybinder.org/v2/gh/SMTG-UCL/surfaxe/HEAD?filepath=tutorials]

Using configuration dictionaries

One of the most powerful parts of surfaxe is its ability to make all VASP input
files needed for convergence testing. To do so surfaxe makes use of configuration
dictionaries (config dicts for short). These are python dictionaries that contain
information used to set up INCAR, KPOINTS and POTCAR files.

For example, if we were interested in setting up a single shot PBEsol calculation
on SnO2 slabs, we could set up the config dict as follows:

config_dict = {
"INCAR": {
 "ALGO": "Normal",
 "EDIFF": 1e-06,
 "EDIFFG": -0.01,
 "ENCUT": 500,
 "GGA": "PS",
 "ISMEAR": 0,
 "ISYM": 2,
 "IWAVPR": 1,
 "LASPH": true,
 "LORBIT": 11,
 "LREAL": "auto",
 "NELM": 200,
 "NSW": 0,
 "PREC": "Accurate",
 "SIGMA": 0.02
},
"KPOINTS": {
 "reciprocal_density": 55
},
"POTCAR": {
 "Sn": "Sn_d",
 "O" : "O"
}
}

Alternatively, one of the ready-made surfaxe config dicts (PBEsol.json,
PBEsol_relax.json, PBE.json, PBE_relax.json or HSE06.json)
can be used and further modified using user_incar_settings,
user_kpoints_settings and user_potcar_settings. The relax config dicts
contain additional parameters necessary for geometric relaxations of slabs.
The POTCAR functional (i.e. PBE, PBE_54) can be chosen with user_potcar_functional.

Pymatgen documentation [https://pymatgen.org/pymatgen.io.vasp.sets.html#pymatgen.io.vasp.sets.DictSet]
covers exact behaviour of the user_incar_settings, user_kpoints_settings and user_potcar_settings
and all additional keyword arguments that can be supplied to slab generation scripts.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 surfaxe	

 	
 	
 surfaxe.analysis	

 	
 	
 surfaxe.generation	

 	
 	
 surfaxe.io	

 	
 	
 surfaxe.vasp_data	

Index

 B
 | C
 | E
 | G
 | M
 | O
 | P
 | S
 | V

B

 	
 	bond_analysis() (in module surfaxe.analysis)

C

 	
 	cart_displacements() (in module surfaxe.analysis)

 	
 	complex_nn() (in module surfaxe.analysis)

 	core_energy() (in module surfaxe.vasp_data)

E

 	
 	electrostatic_potential() (in module surfaxe.analysis)

G

 	
 	generate_slabs() (in module surfaxe.generation)

M

 	
 	
 module

 	surfaxe

 	surfaxe.analysis

 	surfaxe.generation

 	surfaxe.io

 	surfaxe.vasp_data

O

 	
 	oxidation_states() (in module surfaxe.generation)

P

 	
 	plot_bond_analysis() (in module surfaxe.io)

 	plot_electrostatic_potential() (in module surfaxe.io)

 	
 	plot_enatom() (in module surfaxe.io)

 	plot_surfen() (in module surfaxe.io)

 	process_data() (in module surfaxe.vasp_data)

S

 	
 	simple_nn() (in module surfaxe.analysis)

 	slab_from_file() (in module surfaxe.io)

 	slabs_to_file() (in module surfaxe.io)

 	
 surfaxe

 	module

 	
 surfaxe.analysis

 	module

 	
 	
 surfaxe.generation

 	module

 	
 surfaxe.io

 	module

 	
 surfaxe.vasp_data

 	module

V

 	
 	vacuum() (in module surfaxe.vasp_data)

 nav.xhtml

 Table of Contents

 		
 Welcome to surfaxe!

 		
 Getting started

 		
 Introduction

 		
 Installation

 		
 Usage

 		
 Command Line Interface (CLI)

 		
 Pre-processing commands

 		
 Post-processing commands

 		
 Analysis commands

 		
 Data commands

 		
 YAML input files

 		
 surfaxe Python package

 		
 Submodules

 		
 surfaxe.generation module

 		
 surfaxe.convergence module

 		
 surfaxe.analysis module

 		
 surfaxe.io module

 		
 surfaxe.vasp_data module

 		
 Tutorials

 		
 Using configuration dictionaries

_static/plus.png

_static/file.png

_static/minus.png

